skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neeleman, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array to detect CO(1–0), CO(3–2), and rest-frame 349 GHz continuum emission from an Hi-selected galaxy, DLA1020+2733g, atz ≈ 2.3568 in the field of thez= 2.3553 damped Lyαabsorber (DLA) toward QSO J1020+2733. The VLA CO(1–0) detection yields a molecular gas mass of (2.84 ± 0.42) × 1011 × (αCO/4.36)M, the largest ever measured in an Hi-selected galaxy. The DLA metallicity is +0.28 ± 0.16, from the Zniiλ2026 absorption line detected in a Keck Echellette Spectrograph and Imager spectrum. This continues the trend of high-metallicity DLAs being frequently associated with massive galaxies. We obtain a star formation rate (SFR) of ≲400Myr−1from the rest-frame 349 GHz continuum emission and a relatively long molecular gas depletion timescale of ≳0.6 Gyr. The excitation of theJ= 3 rotational level is subthermal, with r 31 L CO ( 3 2 ) / L CO ( 1 0 ) = 0.513 ± 0.081 , suggesting that DLA1020+2733g has a low SFR surface density. The large velocity spread of the CO lines, ≈500 km s−1, and the long molecular gas depletion timescale suggest that DLA1020+2733g is likely to be a cold rotating-disk galaxy. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  2. Abstract We report that the neutral hydrogen (Hi) mass density of the Universe (ρHi) increases with cosmic time sincez ∼ 5, peaks atz ∼ 3, and then decreases towardz ∼ 0. This is the first result of Qz5, our spectroscopic survey of 63 quasars atz ≳ 5 with VLT/X-SHOOTER and Keck/ESI aimed at characterizing intervening Higas absorbers atz ∼ 5. The main feature of Qz5 is the high resolution (R ∼ 7000–9000) of the spectra, which allows us to (1) accurately detect high column density Higas absorbers in an increasingly neutral intergalactic medium atz ∼ 5 and (2) determine the reliability of previousρHimeasurements derived with lower resolution spectroscopy. We find five intervening damped Lyαabsorbers (DLAs) atz > 4.5, which corresponds to the lowest DLA incidence rate ( 0.03 4 0.02 0.05 ) atz ≳ 2. We also measure the lowestρHiatz ≳ 2 from our sample of DLAs and subDLAs, corresponding toρHi = 0.5 6 0.31 0.82 × 1 0 8 M Mpc−3atz ∼ 5. Taking into account our measurements atz ∼ 5 and systematic biases in the DLA detection rate at lower spectral resolutions, we conclude thatρHidoubles fromz ∼ 5 toz ∼ 3. From these results emerges a qualitative agreement between how the cosmic densities of Higas mass, molecular gas mass, and star formation rate build up with cosmic time. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract We have used the Atacama Large Millimeter/submillimeter Array to map CO(3–2) emission from a galaxy, DLA-B1228g, associated with the high-metallicity damped Lyαabsorber atz≈ 2.1929 toward the QSO PKS B1228–113. At an angular resolution of ≈0.″32 × 0.″24, DLA-B1228g shows extended CO(3–2) emission with a deconvolved size of ≈0.″78 × 0.″18, i.e., a spatial extent of ≈6.4 kpc. We detect extended stellar emission from DLA-B1228g in a Hubble Space Telescope Wide Field Camera 3 F160W image and find that Hαemission is detected in a Very Large Telescope SINFONI image from only one side of the galaxy. While the clumpy nature of the F160W emission and the offset between the kinematic and physical centers of the CO(3–2) emission are consistent with a merger scenario, this appears unlikely due to the lack of strong Hαemission, the symmetric double-peaked CO(3–2) line profile, the high molecular gas depletion timescale, and the similar velocity dispersions in the two halves of the CO(3–2) image. Kinematic modeling reveals that the CO(3–2) emission is consistent with arising from an axisymmetric rotating disk with an exponential profile, a rotation velocity ofvrot= 328 ± 7 km s−1, and a velocity dispersion ofσv= 62 ± 7 km s−1. The high value of the ratiovrotv, ≈5.3, implies that DLA-B1228g is a rotation-dominated cold disk galaxy, the second case of a high-zHi-absorption-selected galaxy identified with a cold rotating disk. We obtain a dynamical mass ofMdyn= (1.5 ± 0.1) × 1011M, similar to the molecular gas mass of ≈1011Minferred from earlier CO(1–0) studies; this implies that the galaxy is baryon-dominated in its inner regions. 
    more » « less
  4. Abstract We report a Karl G. Jansky Very Large Array search for redshifted CO(1–0) emission from three Hi-absorption-selected galaxies atz≈ 2, identified earlier in their CO(3–2) or CO(4–3) emission. We detect CO(1–0) emission from DLA B1228-113 atz≈ 2.1933 and DLA J0918+1636 atz≈ 2.5848; these are the first detections of CO(1–0) emission in high-zHi-selected galaxies. We obtain high molecular gas masses,Mmol≈ 1011× (αCO/4.36)M, for the two objects with CO(1–0) detections, which are a factor of ≈1.5–2 lower than earlier estimates. We determine the excitation of the mid-JCO rotational levels relative to theJ= 1 level,rJ1, in Hi-selected galaxies for the first time, obtainingr31= 1.00 ± 0.20 andr41= 1.03 ± 0.23 for DLA J0918+1636, andr31= 0.86 ± 0.21 for DLA B1228-113. These values are consistent with thermal excitation of theJ= 3 andJ= 4 levels. The excitation of theJ= 3 level in the Hi-selected galaxies is similar to that seen in massive main-sequence and submillimeter galaxies atz≳2, but higher than that in main-sequence galaxies atz≈ 1.5; the higher excitation of the galaxies atz≳ 2 is likely to be due to their higher star formation rate (SFR) surface density. We use Hubble Space Telescope Wide Field Camera 3 imaging to detect the rest-frame near-ultraviolet (NUV) emission of DLA B1228-113, obtaining an NUV SFR of 4.44 ± 0.47Myr−1, significantly lower than that obtained from the total infrared luminosity, indicating significant dust extinction in thez≈ 2.1933 galaxy. 
    more » « less
  5. Abstract We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Lyαabsorbers (DLAs) atz≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz= 2.4604 using NOEMA, associated with thez= 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of 56 24 + 38 % and 11 9 + 26 %, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi–selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M. This indicates that the highest-metallicity DLAs atz≈ 2 are associated with the most massive galaxies. The newly identifiedz≈ 2.4604 Hi–selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (αCO/4.36) × (r31/0.55)M. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σupper limit of 2.3Myr−1on the unobscured star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts. 
    more » « less
  6. ABSTRACT The final phase of the reionization process can be probed by rest-frame UV absorption spectra of quasars at z ≳ 6, shedding light on the properties of the diffuse intergalactic medium within the first Gyr of the Universe. The ESO Large Programme ‘XQR-30: the ultimate XSHOOTER legacy survey of quasars at z ≃ 5.8–6.6’ dedicated ∼250 h of observations at the VLT to create a homogeneous and high-quality sample of spectra of 30 luminous quasars at z ∼ 6, covering the rest wavelength range from the Lyman limit to beyond the Mg ii emission. Twelve quasar spectra of similar quality from the XSHOOTER archive were added to form the enlarged XQR-30 sample, corresponding to a total of ∼350 h of on-source exposure time. The median effective resolving power of the 42 spectra is R ≃ 11 400 and 9800 in the VIS and NIR arm, respectively. The signal-to-noise ratio per 10 km s−1 pixel ranges from ∼11 to 114 at λ ≃ 1285 Å rest frame, with a median value of ∼29. We describe the observations, data reduction, and analysis of the spectra, together with some first results based on the E-XQR-30 sample. New photometry in the H and K bands are provided for the XQR-30 quasars, together with composite spectra whose characteristics reflect the large absolute magnitudes of the sample. The composite and the reduced spectra are released to the community through a public repository, and will enable a range of studies addressing outstanding questions regarding the first Gyr of the Universe. 
    more » « less